Common probability distributions
نویسنده
چکیده
For each distribution, I give the name of the distribution along with one or two parameters and indicate whether it is a discrete distribution or a continuous one. Then I describe an example interpretation for a random variable X having that distribution. Each discrete distribution is determined by a probability mass function f which gives the probabilities for the various outcomes, so that f(x) = P (X=x), the probability that a random variable X with that distribution takes on the value x. Each continuous distribution is determined by a probability density function f , which, when integrated from a to b gives you the probability P (a ≤ X ≤ b). Next, I list the mean μ = E(X) and variance σ = E((X−μ)) = E(X)−μ for the distribution, and for most of the distributions I include the moment generating function m(t) = E(X ). Finally, I indicate how some of the distributions may be used.
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملFlood Flow Frequency Model Selection Using L-moment Method in Arid and Semi Arid Regions of Iran
Statistical frequency analysis is the most common procedure for the analysis of flood data at a gauged location thatin first step it is needed to select a model to represent the population. Among them, the central moment has been themost common and widely used, and with the using of computers, the application of the maximum likelihood hasincreased. This research was carried out in order to reco...
متن کاملFitting Tree Height Distributions in Natural Beech Forest Stands of Guilan (Case Study: Masal)
In this research, modeling tree height distributions of beech in natural forests of Masal that is located in Guilan province; was investigated. Inventory was carried out using systematic random sampling with network dimensions of 150×200 m and area sample plot of 0.1 ha. DBH and heights of 630 beech trees in 30 sample plots were measured. Beta, Gamma, Normal, Log-normal and Weibull prob...
متن کاملProbability Distribution Fitting to Maternal Mortality in Nigeria.
The consequences of Maternal Mortality (MM) cannot be overemphasized. It inhibits population growth resulting into loss of lives among others. This work tends to obtain the maternal mortality rates (MMR) in Nigeria, identify some fitted distributions to MMR and determine which of the distributions best fits the data. A comprehensive Exploratory Data Analysis (EDA) was carried on MM and the MMRs...
متن کاملComparsion Between Several Distributions of Exponential Family and Offering Their Features and Applications
In this paper, first, we investigate probability density function and the failure rate function of some families of exponential distributions. Then we present their features such as expectation, variance, moments and maximum likelihood estimation and we identify the most flexible distributions according to the figure of probability density function and the failure rate function and f...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کامل